The general solution for the recurrence relation an​ =3an−1​+10a n−2+12n is an=α⋅(−2)n+β⋅5 n−n−(23/12) The initial values are ao=2 and a1 =−3. Select the system of two linear equations that should be used to solve for
a and B 2=a+B and −3=−2α+5β−1−(23/12) 2=−2α+5β−(23/11) and −3=−2α+5β−1−(23/12) 2=−α+β−(23/11) and−3=−2α+5β−1−(23/12) 2=−α+β−(23/11) and −3=−2α+5β−(23/12) None of the above.