During peak hours, cars arrive at an entry lane to the car park of an office building according to a Poisson process with rate of 5 cars per 15-minute interval. The lane accepts both ticket-based entry and ticketless entry. The time taken to "check-in" is exponentially distributed and has mean 2.3 minutes at the lane. The car park operator opened another entry lane. The new lane accepts only ticketless entry. Cars arrive at this lane according to a Poisson process at rate 7 cars per 15-minute interval. The time taken to "check-in" at this lane is exponentially distributed with mean 1.5 minutes. What is the mean queue lengths for these two lanes?