Regression. A coach wants to see the relationship between the statistics of practice games and official games of a local soccer team. A sample of 12 players was used and the resulting (partial) Excel output is shown below. Assume both \( x \) and \( y \) form normal distributions. (a) The slope of the regression line is A. \( 0.719 \) B. \( 40.717 \) C. \( 0.172 \) D. \( 4.372 \)
(b) The correlation coefficient is A. \( 0.8398 \) B. \( 0.705 \) C. None of the other answers D. \( -0.8398 \) A hypothesis test is done to determine whether the correlation coefficient is significantly different from zero. (c) The alternate hypothesis is A. \( \mathrm{H}_{1}: \mu=0 \) B. \( \mathrm{H}_{1}: \rho=0 \) C. \( H_{1}: \beta \neq 0 \) D. \( \mathrm{H}_{1}: \rho \neq 0 \)
(d) The test statistic is A. \( 0.362 \) B. \( 40.78 \) C. \( 4.794 \) D. None of the other answers (e) The degrees of freedom are: A. 11 B. 9 C. 10 D. 12 (f) At the \( 5 \% \) significance level it can be concluded that there is evidence to suggest the correlation coefficient is A. negative B. zero C. not zero D. positive