Use the formulas given below to express coth −1(34​) in terms of natural logarithms. sinh−1u=ln(u+u2+1
​),u is any real number cosh−1u=ln(u+u2−1
​),u≥1 tanh−1u=21​ln1−u1+u​,∣u∣<1 sech−1u=ln(u1+1−u2
​​),0 ​​),u=0 coth−1u=21​lnu−1u+1​,∣u∣>1 coth−1(34​)=