Use the formulas given below to express coth −1(34) in terms of natural logarithms. sinh−1u=ln(u+u2+1
),u is any real number cosh−1u=ln(u+u2−1
),u≥1 tanh−1u=21ln1−u1+u,∣u∣<1 sech−1u=ln(u1+1−u2
),0
),u=0 coth−1u=21lnu−1u+1,∣u∣>1 coth−1(34)=