Find the general solution of the homogeneous equation x 2
y ′
−xy=x 2
+y 2
. a. To solve this, we should use the substitution v= help (formulas) or, writing y and y ′
in terms of x,v and v ′
, we have y= y ′
= help (formulas) b. After the substitution from the previous part, we obtain the following linear differential equation in x,v,v ′
. help (equations) c. The general solution to the original differential equation is (use C for the arbitrary constant): y= help (equations)