Consider the following function. For which value of k,c, the function f is continuous everywhere. f(x)= ⎩
⎨
⎧
x−1
k(x 2
−1)
,
2,
cos(2x)+c,
if x<0
if x=0
if x>0
(A) k=2,c=2. (B) k=2,c=1. (C) k=1,c=2. (D) k=1,c=1. (E) For all values of k,c,f is continuous everywhere. (F) None of above