Find the linearization L(x,y) of the function f(x,y) at P 0
. Then find an upper bound for the magnitude ∣E∣ of the error in the approximation f(x,y)≈L(x,y) over the rectangle R. f(x,y)=e y
cosx at P 0
(0,0)
R:∣x∣≤0.1,∣y∣≤0.1
(Use e y
≤1.11 and ∣cosx∣≤1 in estimating E.)