The G=(V,E) is a network graphic, and V is the vertex set, and E is the edge set. V=(u,v,w,x,y,z), and E=((u,v),(u,w),(u,x),(v,w),(v,x),(w,x),(w,y),(w,z),(x,y),(y,z)). Let c(x,y) denotes the cost of edge (x,y). c(u,v)=2, c(u,w)=5, c(u,x)=1, c(v,w)=3, c(v,x)=2, c(w,x)=3, c(w,y)=1, c(w,z)=5, c(x,y)=1,c(y,z)=2;
What is the largest cost path from u to z? (for example the path u->x->w is uxw)