Score on last try: 12 of 19 pts. See Details for more. You can retry this question below A college professor believes that students achieve a lower grade point average (GPA) in the fall semester than in the spring semester. To test her theory. she samples 39 of her fall semester students and 38 of her spring semester students. The fall semester students had an average semester GPA of 2.91 with a standard deviation of 0.56; the spring semester students had an average semester GPA of 2.87 with a standard deviation of 0.59. If the GPAs in both student populations are normally distributed, conduct a hypothesis test using a 3% level of significance to test the professor's theory. Step 1: State the null and alternative hypotheses. Let μF​ indicate the mean GPA of fall semester students and μS​ indicate the mean GPA of spring semester students. H0​:μF​−μS​Ha​:μF​−μs​​ (So we will be performing a test.) Step 2: Assuming the null hypothesis is true, determine the features of the distribution of the differences of sample means: semester than in the spring semester. To test her theory, she samples 39 of her fall semester students and 38 of her spring semester students. The fall semester students had an average semester GPA of 2.91 with a standard deviation of 0.56; the spring semester students had an average semester GPA of 2.87 with a standard deviation of 0.59. If the GPAs in both student populations are normally distributed, conduct a hypothesis test using a 3% level of significance to test the professor's theory. Step 1: State the null and alternative hypotheses. Let μF​ indicate the mean GPA of fall semester students and μS​ indicate the mean GPA of spring semester students. (So we will be performing a test) Part 200 Step 2: Assuming the null hypothesis is true, determine the features of the distribution of the differences of sample means. The differences of sample means are and distribution standard deviation Part 3 at 4 Step 3: Find the p-value of the point estimate. P(d) )=P( 1= p-value =