8.14 Let 1≤p<[infinity]. For t∈[0,1], let x 1

(t)=1, x 2

(t)={ 1,
−1,

if 0≤t≤1/2
if 1/2 ​
and for n=1,2,…,j=1,…,2 n
, x 2 n
+j

(t)= ⎩



2 n/p
,
−2 n/p
,
0,

if (2j−2)/2 n+1
≤t≤(2j−1)/2 n+1
if (2j−1)/2 n+1
otherwise. ​
Then the Haar system {x 1

,x 2

,x 3

,…} is a Schauder basis for L p
([0,1]). Each x n

is a step function.