Solve the following problems using the specified techniques and round off computed values to 5 decimal places. 1. Determine the root of the given function using Interhalving (Bisection) method. Show the tabulated the results. Use Ea<0.0001 as terminating condition. f(x) = -0.35x4 +3.25x³ + 3.35x² - 40.8x + 18.52 -0.25e0.5x 2. Determine the root of the given function using Regula-Falsi method. Show the tabulated the results. Use Ea <0.0001 as terminating condition. f(x) = -0.35x4 +3.25x³ + 3.35x² - 40.8x + 18.52 -0.25e0.5x 3. Determine the root of the given function using Fixed point iteration method. Show the tabulated the results. Use Ea < 0.0001 as terminating condition. f(x) = -0.35x¹ +3.25x³ + 3.35x² - 40.8x + 18.52 -0.25e0.5x 4. Determine the root of the given function using Secant method. Show the tabulated the results. Use Ea<0.0001 as terminating condition. f(x) = -0.35x4 +3.25x³ +3.35x² - 40.8x + 18.52 -0.25e0.5x 5. Determine the root of the given function using Newton-Raphson method. Show the tabulated the results. Use Ea<0.0001 as terminating condition. f(x) = -0.35x4 +3.25x³ + 3.35x² - 40.8x + 18.52 -0.25e0.5x 6. Evaluate for the all the roots of the function using Bairstow's method with r = s = 0. Terminate if Er = Es < 0.0385% f(x) = 0.5x4 +0.8x³ - 4x²-3x - 1 7. Evaluate a root using Muller's method from the function. Terminate if Es < 0.0055% f(x) = 0.5x4 +0.8x³ - 4x²-3x - 1