In questions 4-6 show all workings as in the form of a table indicated and apply integration by parts as indicated by the formula ∫udv=uv−∫vdu or similar. I=∫tan −1
(3x−1)dx Let u=3x−1 then dw
dx

=3 So we have ∫tan −1
(3x−1)dx= 3
1

∫tan −1
udu= 3
1

I 2

For I 2

w=…dv=…
du
dw

=…v=…
∫tan −1
udu=wv−∫vdw

Then the answer will be =

∫tan −1
(3x−1)dx
(…)tan −1
(3x−1)− constant ln(…)+c

I=∫x 2
cos( 2
x

)dx Let u=…
dx
du

=…

dv=cos( 2
x

)dx
v=…

(for v use substitution w= 2
z

and dx
dw

= 2
1

) I

=∫x 2
cos 2
x

)dx
=(…)−4∫xsin 2
x

dx
=(…)−4I 2


Let I 2

=∫xsin 2
π

dx Then u=…
ds
dt

=…

dv=…
v=…

(using substitution w= 2
π

and dx
dw

= 2
1

to obtain v ). We have (answer worked out)

Respuesta :