(a) Let Y1​ and Y2​ have a bivariate normal distribution. Show that the conditional distribution of Y1​ given that Y2​=y2​ is a normal distribution with mean μ1​+rhoσ2​σ1​​(y2​−μ2​) and variance σ12​(1−rho2). (10) (b) Consider the following bivariate joint probability density function for the random vector [XY​] fX,Y​(x,y)=2π1−rho2​σx​σy​1​exp[−2(1−rho2)1​{σx2​(x−μx​)2​−2rhoσx​σy​(x1​−μx​)(x2​−μy​)​ +σy2​(x−μy​)2​}],−[infinity]0,σy​>0, and ∣rho∣<1. Then fX,Y​(x,y) is such that μ=(μx​,​μy​​)′Σ2×2​=[σx2​rhoσx​σy​​rhoσx​σy​σy2​​]. Given that fY1​,Y2​​(y1​,y2​)=k1​exp[−21​{2y12​+y22​+2y1​y2​−22y1​−14y2​+65}],−[infinity]