Let X1,X2,…,Xn be a random sample from a distribution with probability density function f(x∣θ)=θxθ−1 if 0<1≤x and θ>0} and 0 otherwise. The decision rule of the uniformly most powerful test of \ ( H−{0}: theta =1 V against H1:θ>1 at the 0.05 level of significance is Select one: A. reject H0 if ∏i=1nxi≤c where c satisfies 0.05=P(∏i=1nXi≤c∣θ=1). B. reject H0 if ∏i=1nxi≥c where c satisfies 0.05=P(∏i=1nXi≥c∣θ=1). C. reject H0 if ∑i=1nxi≤c where c satisfies 0.05=P(∑i=1nXi≤c∣θ=1). D. reject H0 if ∑i=1nxi≥c where c satisfies 0.05=P(∑i=1nXi≥c∣θ=1).