Find the equations of the normal plane and the osculating plane of the curve r(t) = 8 sin(3t), t, 8 cos(3t) at the point (0, , −8).

a) Normal plane: x - y + z = 0, Osculating plane: 8x + 8y + z = 0
b) Normal plane: x + y - z = 0, Osculating plane: 8x - 8y + z = 0
c) Normal plane: x - y + z = 0, Osculating plane: 8x - 8y - z = 0
d) Normal plane: x + y - z = 0, Osculating plane: 8x + 8y - z = 0