Consider the function f(x) defined for values of x inside the interval (a, b). Find P1(x), P2(x), and P3(x), the Taylor polynomials centered at 0, of degree 1, 2, and 3 respectively for the function f(x).

A) P1(x) = f(0) + f'(0)x, P2(x) = f(0) + f'(0)x + f''(0)x^2, P3(x) = f(0) + f'(0)x + f''(0)x^2 + f'''(0)x^3
B) P1(x) = f(0) + f'(0)x + f''(0)x^2, P2(x) = f(0) + f'(0)x + f''(0)x^2 + f'''(0)x^3, P3(x) = f(0) + f'(0)x + f''(0)x^2 + f'''(0)x^3
C) P1(x) = f(0) + f'(0)x, P2(x) = f(0) + f'(0)x, P3(x) = f(0) + f'(0)x
D) P1(x) = f(0) + f'(0)x, P2(x) = f(0) + f'(0)x + f''(0)x^2, P3(x) = f(0) + f'(0)x + f''(0)x^2 + f'''(0)x^3 + f''''(0)x^4