Vertices of a variable triangle are A(3,4),B(5cosθ,5sinθ) and C(5sinθ,−5cosθ) Then, locus of its orihocenire is
A.(x+y−1)2+(x−y−7)2=100
B.(x+y−7)2+(x−y−1)2=100
C.(x+y−7)2+(x+y−1)2=100
D.(x+y−7)2+(x−y+1)2=100