Four circles are drawn. Let $A_1,$ $A_2,$ $A_3,$ $A_4$ be the areas of the regions, so $A_1$ is the area inside the smallest circle, $A_2$ is the area outside the smallest circle and inside the second-smallest circle, and so on. The areas satisfy
\[A_1 = \frac{A_2}{2} = \frac{A_3}{4} = \frac{A_4}{5}.\]Let $r_1$ denote the radius of the smallest circle, and let $r_4$ denote the radius of the largest circle. Find $\frac{r_4}{r_1}.$
[asy]
unitsize(1 cm);
pair[] O;
real[] r;
O[1] = (0,0);
O[2] = (0.1,0.2);
O[3] = (-0.2,-0.1);
O[4] = (0.1,-0.3);
r[1] = 1;
r[2] = 1.5;
r[3] = 2;
r[4] = 2.5;
fill(Circle(O[4],r[4]),lightblue); draw(Circle(O[4],r[4])); label("$A_4$", (1.8,-1.5));
fill(Circle(O[3],r[3]),lightgreen); draw(Circle(O[3],r[3]));label("$A_3$", (-1.3,-1.3));
fill(Circle(O[2],r[2]),yellow); draw(Circle(O[2],r[2]));label("$A_2$", (1,1));
fill(Circle(O[1],r[1]),lightred); draw(Circle(O[1],r[1]));label("$A_1$", O[1]);
[/asy]