Describe the worst case running time of the following pseudocode functions in Big-Oh notation in terms of the variable n.
O(n²). O(n³ log n) O(n log n), O(n), O(n² log n), O(n⁵), O(2ⁿ), O(n³), O(log n), O(1), O(n⁴), O(nⁿ)
e) void silly(int n, int x, int y) {

if (x < y) {

for (int i = 0; i < n; ++i)

for (int j = 0; j < n * i; ++j)

System.out.println("y = " + y);

} else {

System.out.println("x = " + x);

}

} __________________

f) void silly(int n) {

j = 0;

while (j < n) {

for (int i = 0; i < n; ++i) {

System.out.println("j = " + j);

}

j = j + 5;

}

} __________________

g) void silly(int n) {

for (int i = 0; i < n * n; ++i) {

for (int j = 0; j < n; ++j) {

for (int k = 0; k < i; ++k)

System.out.println("k = " + k);

for (int m = 0; m < 100; ++m)

System.out.println("m = " + m);

}

}

} __________________

h) void happy(int n) {

for (int i = n*n; i > 0; i--) {

for (int k = 0; k < n; ++k)

System.out.println("k = " + k);

for (int j = 0; j < i; ++j)

System.out.println("j = " + j);

for (int m = 0; m < 5000; ++m)

System.out.println("m = " + m);

}

} __________________

i) Consider the following function:

int mystery(int n) {

int answer;

if (n > 0) {

answer =(mystery(n-2)+3*mystery(n/2) + 5);

return answer;

}

else

return 1;

}