Review the table of values for function g(x).
x g(x)
2.9 -1.55
2.99 -1.58
2.999 -1.59
3.001 1.59
3.01 1.58
3.1 1.55
Which statement correctly explains whether Limit x→3 g(x) exists?
a. The limits lim x→3⁻ g(x) = -1.6 and lim x→3⁺ g(x) = 1.6. Both lim x→3⁻ g(x) and lim x→3⁺ g(x) exist; so lim x→3 g(x) exists.
b. The limits lim x→3⁻ g(x) = 1.6 and lim x→3⁺ g(x) = -1.6. Both lim x→3⁻ g(x) and lim x→3⁺ g(x) exist; so lim x→3 g(x) exists.
c. The limits limx→3⁻ g(x) = -1.6 and lim x→3⁺ g(x) = 1.6. Because lim x→3⁻ g(x) ≠ lim x→3⁺ g(x) does not exist
d. The limits lim x→3⁻ g(x) =1.6 and lim x→3⁺ g(x) = -1.6. Because lim x→3⁻ g(x) ≠ lim x→3⁺ g(x) does not exist