If x. y, and z are Boolean variables, which of the following statements about the two-and three- variable properties of Boolean algebra do not hold?
• 10a: x.yy. Commutative
10b: x+y=y+x
• 11a: x.fy.z) = (xy). Associative
11b: x+y+z) = (x+y)+2
• 12a: x.ly+z) =x.y+x.2 Distributive
12b: x+y2 = (x+y).(x+z)
• 13a: X+x.y= x Absorption
13b: x.(x+y) = x
• 14a: x.y+x.y = x Combining
14b: (x+y).(x+y) = x
• 15a: (XY) -xy DeMorgan's Theorem
15b: (x+y)= x+y
• 16a: x+x'y wx+y Another form of Absorption
16b: x(x+y) - xy
• 17a: X.y+y.z+x_zax.y+xz Consensus
17b: (x+y).ly+2).(x+2)=(x+y).(x +z) .
O 11a and 11b
O 16a and 16b
O 15a and 15b
O 10a and 10b
O 14a and 14b
O 17a and 17b
O 13a and 13b
O 12a and 12b