Set up the triple integral of an arbitrary continuous function f(x, y, z) in cylindrical or spherical coordinates over the solid shown.
A) ∫₀{2π} ∫₀¹ ∫₀{√{4 - y²}} f(rcos(θ), rsin(θ), z) r , dz , dr , dθ
B) ∫₀{2π} ∫₀{√{4 - z²}} ∫₀¹ f(rhocos(ϕ)sin(θ), rhosin(ϕ)sin(θ), rhocos(θ)) rho² , drho , dϕ , dθ
C) ∫₀{π} ∫₀{2π} ∫₀² f(rhosin(ϕ)cos(θ), rhosin(ϕ)sin(θ), rhocos(ϕ)) rho² , drho , dϕ , dθ
D) ∫₀{2π} ∫₀¹ ∫₀{√{4 - z²}} f(rcos(θ), rsin(θ), z) r , dz , dr , dθ