Respuesta :
To be clear, the given relation between
time and female population is an integral:
[tex]t = \int { \frac{P+S}{P[(r - 1)P - S]} } \,
dP [/tex]
[tex]t = \int { \frac{P+400}{P[(1.2 - 1)P - 400]} } \, dP [/tex]
= [tex] \int { \frac{P+400}{P(0.2P - 400)} } \, dP [/tex]
In order to evaluate this integral, we need to write this rational function in a simpler way:
[tex]\frac{P+400}{P(0.2P - 400)} = \frac{A}{P} + \frac{B}{(0.2P - 400)} [/tex]
where we need to evaluate A and B. In order to do so, let's calculate the LCD:
[tex]\frac{P+400}{P(0.2P - 400)} = \frac{A(0.2P - 400)}{P(0.2P - 400)} + \frac{BP}{P(0.2P - 400)} [/tex]
the denominators cancel out and we get:
P + 400 = 0.2AP - 400A + BP
= P(0.2A + B) - 400A
The two sides must be equal to each other, bringing the system:
[tex] \left \{ {{0.2A + B = 1} \atop {-400A = 400}} \right. [/tex]
Which can be easily solved:
[tex] \left \{ {{B=1.2} \atop {A=-1}} \right. [/tex]
Therefore, our integral can be written as:
[tex]t = \int { \frac{P+400}{P(0.2P - 400)} } \, dP = \int {( \frac{-1}{P} + \frac{1.2}{0.2P-400} )} \, dP [/tex]
= [tex]- \int { \frac{1}{P} \, dP + 1.2\int { \frac{1}{0.2P-400} } \, dP[/tex]
= [tex]- \int { \frac{1}{P} \, dP + 6\int { \frac{0.2}{0.2P-400} } \, dP[/tex]
= - ln |P| + 6 ln |0.2P - 400| + C
Now, let’s evaluate C by considering that at t = 0 P = 10000:
0 = - ln |10000| + 6 ln |0.2(10000) - 400| + C
C = ln |10000| - 6 ln |1600|
C = ln (10⁴) - 6 ln (2⁶·5²)
C = 4 ln (10) - 36 ln (2) - 12 ln (5)
Therefore, the equation relating female population with time requested is:
t = - ln |P| + 6 ln |0.2P - 400| + 4 ln (10) - 36 ln (2) - 12 ln (5)