Respuesta :
midpoint of AB:
x = (9 - 1)/ 2 = 4
y = (8 - 2)/2 = 3
midpoint of AB = (4 , 3)
x = (9 - 1)/ 2 = 4
y = (8 - 2)/2 = 3
midpoint of AB = (4 , 3)
For this we must use the Midpoint Formula.
[tex]m= (\frac{y_2-y_1}{2}, \frac{x_2-x_1}{2})[/tex]
We'll find the y coordinate first.
[tex]y= \frac{y_2-y_1}{2} \\ y= \frac{8-(-2)}{2} \\ y= \frac{10}{2} [/tex]
y=5
Now we'll do the same for x.
[tex]x= \frac{x_2-x_1}{2} \\ x= \frac{9-(-1)}{2} \\ x= \frac{10}{2} [/tex]
x=5
Your final answer is m=(5, 5)
[tex]m= (\frac{y_2-y_1}{2}, \frac{x_2-x_1}{2})[/tex]
We'll find the y coordinate first.
[tex]y= \frac{y_2-y_1}{2} \\ y= \frac{8-(-2)}{2} \\ y= \frac{10}{2} [/tex]
y=5
Now we'll do the same for x.
[tex]x= \frac{x_2-x_1}{2} \\ x= \frac{9-(-1)}{2} \\ x= \frac{10}{2} [/tex]
x=5
Your final answer is m=(5, 5)