Which of the two functions below has the largest maximum y-value?f(x) = -3x^4 - 14g(x) = -x^3 + 2 A.There is not enough information to determine B.g(x) C.f(x) D.The extreme maximum y-value for both f(x)and g(x) is infinity

Respuesta :

We have the following functions:
 f (x) = -3x ^ 4 - 14 
 g (x) = -x ^ 3 + 2f
 Deriving both functions we have:
 f '(x) = -12x ^ 3
 g '(x) = -3x ^ 2
 We equal zero and clear x:
 f '(x) = -12x ^ 3 = 0 ----> x = 0
 g '(x) = -3x ^ 2 = 0 -----> x = 0
 Substituting x = 0 in the given equations:
 f (0) = -3 (0) ^ 4 - 14 = -14
 g (0) = - (0) ^ 3 + 2 = 2
 Answer:
 
the largest maximum y-value is:
 
B.g (x)

Answer:

B is correct

Step-by-step explanation: