[tex]\bf ~~~~~~~~~~~~\textit{function transformations}
\\\\\\
% templates
f(x)= A( Bx+ C)+ D
\\\\
~~~~y= A( Bx+ C)+ D
\\\\
f(x)= A\sqrt{ Bx+ C}+ D
\\\\
f(x)= A(\mathbb{R})^{ Bx+ C}+ D
\\\\
f(x)= A sin\left( B x+ C \right)+ D
\\\\
--------------------[/tex]
[tex]\bf \bullet \textit{ stretches or shrinks horizontally by } A\cdot B\\\\
\bullet \textit{ flips it upside-down if } A\textit{ is negative}\\
~~~~~~\textit{reflection over the x-axis}
\\\\
\bullet \textit{ flips it sideways if } B\textit{ is negative}[/tex]
[tex]\bf ~~~~~~\textit{reflection over the y-axis}
\\\\
\bullet \textit{ horizontal shift by }\frac{ C}{ B}\\
~~~~~~if\ \frac{ C}{ B}\textit{ is negative, to the right}\\\\
~~~~~~if\ \frac{ C}{ B}\textit{ is positive, to the left}\\\\
\bullet \textit{ vertical shift by } D\\
~~~~~~if\ D\textit{ is negative, downwards}\\\\
~~~~~~if\ D\textit{ is positive, upwards}\\\\
\bullet \textit{ period of }\frac{2\pi }{ B}
[/tex]
and now with that template in mind,
bearing in mind the parent function for both is just y = x², or y = 1(1x + 0)² + 0.
[tex]\bf y=\stackrel{A}{\cfrac{1}{2}}(x\stackrel{C}{+4})^2[/tex]
is x² but expanded by twice as much vertically, and has a horizontal shift of +4, namely 4 units to the left.
y=(x-1)² - 3
is just x² but with a horizontal shfit of -1, namely 1 unit to the right, and a vertical shift of -3, namely 3 units down.