Respuesta :
Given:
4log1/2^w (2log1/2^u-3log1/2^v)
Req'd:
Single logarithm = ?
Sol'n:
First remove the parenthesis,
4 log 1/2 (w) + 2 log 1/2 (u) - 3 log 1/2 (v)
Simplify each term,
Simplify the 4 log 1/2 (w) by moving the constant 4 inside the logarithm;
Simplify the 2 log 1/2 (u) by moving the constant 2 inside the logarithm;
Simplify the -3 log 1/2 (v) by moving the constant -3 inside the logarithm:
log 1/2 (w^4) + 2 log 1/2 (u) - 3 log 1/2 (v)
log 1/2 (w^4) + log 1/2 (u^2) - log 1/2 (v^3)
We have to use the product property of logarithms which is log of b (x) + log of b (y) = log of b (xy):
Thus,
Log of 1/2 (w^4 u^2) - log of 1/2 (v^3)
then use the quotient property of logarithms which is log of b (x) - log of b (y) = log of b (x/y)
Therefore,
log of 1/2 (w^4 u^2 / v^3)
and for the final step and answer, reorder or rearrange w^4 and u^2:
log of 1/2 (u^2 w^4 / v^3)
4log1/2^w (2log1/2^u-3log1/2^v)
Req'd:
Single logarithm = ?
Sol'n:
First remove the parenthesis,
4 log 1/2 (w) + 2 log 1/2 (u) - 3 log 1/2 (v)
Simplify each term,
Simplify the 4 log 1/2 (w) by moving the constant 4 inside the logarithm;
Simplify the 2 log 1/2 (u) by moving the constant 2 inside the logarithm;
Simplify the -3 log 1/2 (v) by moving the constant -3 inside the logarithm:
log 1/2 (w^4) + 2 log 1/2 (u) - 3 log 1/2 (v)
log 1/2 (w^4) + log 1/2 (u^2) - log 1/2 (v^3)
We have to use the product property of logarithms which is log of b (x) + log of b (y) = log of b (xy):
Thus,
Log of 1/2 (w^4 u^2) - log of 1/2 (v^3)
then use the quotient property of logarithms which is log of b (x) - log of b (y) = log of b (x/y)
Therefore,
log of 1/2 (w^4 u^2 / v^3)
and for the final step and answer, reorder or rearrange w^4 and u^2:
log of 1/2 (u^2 w^4 / v^3)
Answer:
[tex]4\log_{\frac{1}{2}}w+(2\log_{\frac{1}{2}}u-3\log_{\frac{1}{2}}v)=\log_{\frac{1}{2}}(\frac{w^4u^2}{v^3})[/tex]
Step-by-step explanation:
Given : Expression [tex]4\log_{\frac{1}{2}}w+(2\log_{\frac{1}{2}}u-3\log_{\frac{1}{2}}v)[/tex]
To write : As a single logarithm?
Solution :
[tex]4\log_{\frac{1}{2}}w+(2\log_{\frac{1}{2}}u-3\log_{\frac{1}{2}}v)[/tex]
Remove parenthesis,
[tex]=4\log_{\frac{1}{2}}w+2\log_{\frac{1}{2}}u-3\log_{\frac{1}{2}}v[/tex]
Simplify each term by applying logarithmic property, [tex]a\log x=\log x^a[/tex]
[tex]=\log_{\frac{1}{2}}w^4+\log_{\frac{1}{2}}u^2-\log_{\frac{1}{2}}v^3[/tex]
Use the product property of logarithms, [tex]\log_bx+\log_b y=\log_b (xy)[/tex]
[tex]=\log_{\frac{1}{2}}w^4u^2-\log_{\frac{1}{2}}v^3[/tex]
Use the quotient property of logarithms, [tex]\log_bx-\log_b y=\log_b (\frac{x}{y})[/tex]
[tex]=\log_{\frac{1}{2}}(\frac{w^4u^2}{v^3})[/tex]
Therefore,
[tex]4\log_{\frac{1}{2}}w+(2\log_{\frac{1}{2}}u-3\log_{\frac{1}{2}}v)=\log_{\frac{1}{2}}(\frac{w^4u^2}{v^3})[/tex]