[tex]\nabla f(x,y,z)=\dfrac{\partial f}{\partial x}\,\mathbf i+\dfrac{\partial f}{\partial y}\,\mathbf j+\dfrac{\partial f}{\partial z}\,\mathbf k=\mathbf f(x,y,z)[/tex]
[tex]\displaystyle\int\frac{\partial f}{\partial x}\,\mathrm dx=\int yz\,\mathrm dx[/tex]
[tex]\implies f(x,y,z)=xyz+g(y,z)[/tex]
[tex]\dfrac{\partial f}{\partial y}=xz+\dfrac{\partial g}{\partial z}=xz[/tex]
[tex]\implies\dfrac{\partial g}{\partial z}=0[/tex]
[tex]\implies g(y,z)=h(z)[/tex]
[tex]\dfrac{\partial f}{\partial z}=xy+\dfrac{\mathrm dh}{\mathrm dz}=xy+18z[/tex]
[tex]\implies\dfrac{\mathrm dh}{\mathrm dz}=18z[/tex]
[tex]\implies h(z)=9z^2+C[/tex]
[tex]\implies f(x,y,z)=xyz+9z^2+C[/tex]
[tex]\implies\displaystyle\int_{\mathcal C}\mathbf f\cdot\mathrm d\mathbf r=f(5,6,1)-f(1,0,-1)=30[/tex]