If JO = 32 is JKO = PMN? If so, find JN
A. Yes, JKO = PMN by AAS; JN = 32
B. Yes, JKO = PMN by AAS; JN = 51.
C. Yes, JKO = PMN by SAS; JN = 51.
D. No, the triangles are not congruent.

(the answer is not C)

If JO 32 is JKO PMN If so find JN A Yes JKO PMN by AAS JN 32 B Yes JKO PMN by AAS JN 51 C Yes JKO PMN by SAS JN 51 D No the triangles are not congruent the answ class=

Respuesta :

The answer is B. Yes, JKO = PMN by AAS; JN = 51.

Answer:

Option B.

Step-by-step explanation:

Given information: JO = 32, JK║PM, KO║MN.

In triangle JKO and PMN,

[tex]\angle JOK\cong \angle PNM[/tex]         (Corresponding angles)

[tex]\angle OJK\cong \angle NPM[/tex]         (Corresponding angles)

[tex]JK\cong PM[/tex]                                     (10+15=25)

Two angles and one non-include side are congruent to corresponding two angle and non-included side.

[tex]\triangle JKO\cong \triangle PMN[/tex]             (By AAS postulate)

Corresponding parts of congruent triangles are congruent.

[tex]JO\cong PN[/tex]                                     (CPCTC)

[tex]JO=PN[/tex]                          (Definition of congruent segment)

[tex]JO=PO+ON[/tex]

[tex]32=13+ON[/tex]

[tex]32-13=ON[/tex]

[tex]19=ON[/tex]

We need to find the value of JN.

[tex]JN=JO+ON[/tex]

[tex]JN=32+19[/tex]

[tex]JN=51[/tex]

Therefore, the correct option is B.