Answer:
Option B.
Step-by-step explanation:
Given information: JO = 32, JK║PM, KO║MN.
In triangle JKO and PMN,
[tex]\angle JOK\cong \angle PNM[/tex] (Corresponding angles)
[tex]\angle OJK\cong \angle NPM[/tex] (Corresponding angles)
[tex]JK\cong PM[/tex] (10+15=25)
Two angles and one non-include side are congruent to corresponding two angle and non-included side.
[tex]\triangle JKO\cong \triangle PMN[/tex] (By AAS postulate)
Corresponding parts of congruent triangles are congruent.
[tex]JO\cong PN[/tex] (CPCTC)
[tex]JO=PN[/tex] (Definition of congruent segment)
[tex]JO=PO+ON[/tex]
[tex]32=13+ON[/tex]
[tex]32-13=ON[/tex]
[tex]19=ON[/tex]
We need to find the value of JN.
[tex]JN=JO+ON[/tex]
[tex]JN=32+19[/tex]
[tex]JN=51[/tex]
Therefore, the correct option is B.