Respuesta :
we know that
tan (A+B)=sin (A+B)/cos (A+B)
sin (A+B)=sin A*cos B+sin B*cos A
cos (A+B)=cos A*cos B-sin A*sin B
so
for (x+pi/2)
A=x
B=pi/2
sin A=sin x
sin B=1
cos A=cos x
cos B=0
sin (A+B)=sin x*0+1*cos x------> cos x
cos (A+B)=cos x*0-sin x*1------> -sin x
tan (x+pi/2)=cos x/(-sin x)------> -cot x
the answer is the option
D. y= tan (x+pi/2)
tan (A+B)=sin (A+B)/cos (A+B)
sin (A+B)=sin A*cos B+sin B*cos A
cos (A+B)=cos A*cos B-sin A*sin B
so
for (x+pi/2)
A=x
B=pi/2
sin A=sin x
sin B=1
cos A=cos x
cos B=0
sin (A+B)=sin x*0+1*cos x------> cos x
cos (A+B)=cos x*0-sin x*1------> -sin x
tan (x+pi/2)=cos x/(-sin x)------> -cot x
the answer is the option
D. y= tan (x+pi/2)
Answer:
D. y = tan(x + pi/2)
Step-by-step explanation:
this is the correct answer on ed-genuity, hope this helps! :)