Which is an asymptote of the graph of the function y = cot ( x - 2pi / 3 )

A) x = - 2 pi / 3

B) x = - pi / 3

C) x = - 4 pi / 3

C) x = 7 pi / 3

Respuesta :

The answer to the equation is b

Answer with explanation:

we have to find the Asymptote of the function:

  [tex]y=\cot(x-\frac{2\pi}{3})[/tex]

As  period of cot x is equal to [-π, π].

 [tex]x-\frac{2\pi}{3}=0\\\\x=\frac{2\pi}{3}\\\\ x-\frac{2\pi}{3}=\pi\\\\x=\frac{2\pi}{3}+\pi \\\\x=\frac{5\pi}{3} \\\\x=\cot(2\pi -\frac{\pi}{3})\\\\x=\frac{-\pi}{3}[/tex]

You can find asymptote by drawing the graph of

     [tex]y=\cot(x-\frac{2\pi}{3})[/tex]

There are two Asymptotes

[tex]1.\rightarrow x= \frac{-\pi}{3}\\\\2..\rightarrow x= \frac{2\pi}{3}[/tex]

Out of the four option

Option B

          [tex]x=\frac{-\pi}{3}[/tex] is one asymptote of the graph.

Ver imagen Аноним