Respuesta :
assuing you mean
[tex]log_{3}(\frac{5}{x^2})[/tex]
remember that [tex]log(\frac{a}{b})=log(a)-log(b)[/tex]
also, [tex]log(x^m)=(m)log(x)[/tex]
so
[tex]log_{3}(\frac{5}{x^2})=[/tex]
[tex]log_{3}(5)-log_{3}(x^2)=[/tex]
[tex]log_{3}(5)-2log{3}(x)[/tex]
the answer is B
[tex]log_{3}(\frac{5}{x^2})[/tex]
remember that [tex]log(\frac{a}{b})=log(a)-log(b)[/tex]
also, [tex]log(x^m)=(m)log(x)[/tex]
so
[tex]log_{3}(\frac{5}{x^2})=[/tex]
[tex]log_{3}(5)-log_{3}(x^2)=[/tex]
[tex]log_{3}(5)-2log{3}(x)[/tex]
the answer is B
Answer: The correct option is
(B) [tex]\log_35-2\log_3x.[/tex]
Step-by-step explanation: We are given to select the expression that is equivalent to the following logarithmic expression :
[tex]E=\log_3\dfrac{5}{x^2}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(i)[/tex]
We will be using the following properties of logarithms :
[tex](i)~\log_a\dfrac{b}{c}=\log_ab-\log_ac,\\\\(ii)~\log_ab^c=c\log_ab.[/tex]
From (i), we get
[tex]E\\\\=\log_3\dfrac{5}{x^2}\\\\\\=\log_35-\log_3x^2~~~~~~~~~~~~~~~~~~~~[\textup{Using property (i)}]\\\\\\=\log_35-2\log_3x.~~~~~~~~~~~~~~~~~~~~[\textup{Using property (ii)}][/tex]
Thus, the required equivalent expression is [tex]\log_35-2\log_3x.[/tex]
Option (B) is CORRECT.