Respuesta :
Answer:
h(x) grows in faster manner.
Step-by-step explanation:
Let f(x) and g(x) be positive for large value of x
then we say f(x) grows faster than g(x) as x → ∞ if [tex]\lim_{x \to \infty} \frac{f(x)}{g(x)}[/tex]= +∞
Let f(x) and g(x) be positive for large value of x
then we say f(x) and g(x) grows with same rate if
as x → ∞ if [tex]\lim_{x \to \infty} \frac{f(x)}{g(x)}[/tex]= a finite non zero value.
Using above we can see g(x) and f(x) will grow slower than h(x) as
[tex]\lim_{x \to \infty} \frac{f(x)}{g(x)}[/tex]
[tex]\lim_{x \to \infty} \frac{9.5x^2}{2.5x)}[/tex]
∞
therefore h(x) grows in faster manner.