Respuesta :
[tex]Probbility=\frac{desired}{total}[/tex]
[tex]P_{triangle}=\frac{Area_{triangle}}{Area_{total}}[/tex]
[tex]P_{triangle}=\frac{4\times\frac{b \times h}{2}}{s^{2}}[/tex]
[tex]P_{triangle}=\frac{4\times\frac{8 \times 8}{2}}{26^{2}}[/tex]
[tex]P_{triangle}=\frac{4\times\frac{64}{2}}{676}[/tex]
[tex]P_{triangle}=\frac{128}{676}[/tex]
[tex]P_{triangle}=0.189349112[/tex]
[tex]P_{triangle=0.19[/tex]
[tex]P_{triangle}\approx19\%[/tex]
[tex]P_{triangle}=\frac{Area_{triangle}}{Area_{total}}[/tex]
[tex]P_{triangle}=\frac{4\times\frac{b \times h}{2}}{s^{2}}[/tex]
[tex]P_{triangle}=\frac{4\times\frac{8 \times 8}{2}}{26^{2}}[/tex]
[tex]P_{triangle}=\frac{4\times\frac{64}{2}}{676}[/tex]
[tex]P_{triangle}=\frac{128}{676}[/tex]
[tex]P_{triangle}=0.189349112[/tex]
[tex]P_{triangle=0.19[/tex]
[tex]P_{triangle}\approx19\%[/tex]
Answer:
.19
Step-by-step explanation:
The above answer is correct just remember to put it in decimal form.