Respuesta :
A= Area= 485 5/8 ft^2
W= Width= 18 1/2 ft
L= Length= ?
Area= LW
plug in known numbers
485 5/8= (L)(18 1/2)
convert to improper fractions
3885/8= (L)(37/2)
divide both sides by 37/2
3885/8 ÷ 37/2= L
to divide fractions, multiply by the reciprocal/inverse of 37/2
3885/8 * 2/37= L
multiply numerators; multiply denominators
(3885*2)/(8*37)= L
multiply inside parentheses
7770/296= L
simplify
105/4 feet= L
change to mixed number
26 1/4 feet= L
ANSWER: The length is 26 1/4 feet (or 26.25 feet).
Hope this helps! :)
W= Width= 18 1/2 ft
L= Length= ?
Area= LW
plug in known numbers
485 5/8= (L)(18 1/2)
convert to improper fractions
3885/8= (L)(37/2)
divide both sides by 37/2
3885/8 ÷ 37/2= L
to divide fractions, multiply by the reciprocal/inverse of 37/2
3885/8 * 2/37= L
multiply numerators; multiply denominators
(3885*2)/(8*37)= L
multiply inside parentheses
7770/296= L
simplify
105/4 feet= L
change to mixed number
26 1/4 feet= L
ANSWER: The length is 26 1/4 feet (or 26.25 feet).
Hope this helps! :)
Area = Length x Width
[tex]485 \dfrac{5}{8} = 18 \dfrac{1}{2} \times \text{ Width}[/tex]
Divide both side by 18 1/2:
[tex]\text{ Width} = 485 \dfrac{5}{8} \div 18 \dfrac{1}{2} [/tex]
Convert to improper:
[tex]\text{ Width} = \dfrac{3885}{8} \div \dfrac{37}{2} [/tex]
Change divide fraction to multiplicationf fraction:
[tex]\text{ Width} = \dfrac{3885}{8} \times \dfrac{2}{37} [/tex]
Mutliply and simplify:
[tex]\text{ Width} = \dfrac{104}{4} = 26 \dfrac{1}{4} \text{ feet}[/tex]
Answer: Length = 26 1/4 feet
[tex]485 \dfrac{5}{8} = 18 \dfrac{1}{2} \times \text{ Width}[/tex]
Divide both side by 18 1/2:
[tex]\text{ Width} = 485 \dfrac{5}{8} \div 18 \dfrac{1}{2} [/tex]
Convert to improper:
[tex]\text{ Width} = \dfrac{3885}{8} \div \dfrac{37}{2} [/tex]
Change divide fraction to multiplicationf fraction:
[tex]\text{ Width} = \dfrac{3885}{8} \times \dfrac{2}{37} [/tex]
Mutliply and simplify:
[tex]\text{ Width} = \dfrac{104}{4} = 26 \dfrac{1}{4} \text{ feet}[/tex]
Answer: Length = 26 1/4 feet