One way of obtaining pure sodium carbonate is through the decomposition of the mineral trona, Na3(CO3)(HCO3)·2H2O. 2Na3(CO3)(HCO3)·2H2O(s) → 3Na2CO3(s) + CO2(
g. + 5H2O(
g. When 1.00 metric ton (1.00 × 103 kg) of trona is decomposed, 0.650 metric ton of Na2CO3 is recovered. What is the percent yield of this reaction?

Respuesta :

Percentage yield = (actual yield / theoretical yield) x 100%

The balanced equation for the decomposition is,
 2Na₃(CO₃)(HCO₃)·2H₂O(s) → 3Na₂CO₃(s) + CO₂(g) + 5H₂O(g)

The stoichiometric ratio between 
Na₃(CO₃)(HCO₃)·2H₂O(s)  and Na₂CO₃(s) is 2 : 3

The decomposed mass of Na₃(CO₃)(HCO₃)·2H₂O(s) = 1000 kg
                                                                                     = 1000 x 10³ g

Molar mass of Na₃(CO₃)(HCO₃)·2H₂O(s) = 226 g mol⁻¹
moles of Na₃(CO₃)(HCO₃)·2H₂O(s) = mass / molar mass
                                                         = 1000 x 10³ g / 226 g mol⁻¹
                                                         = 4424.78 mol

Hence, moles of Na₂CO₃ formed = 4424.78 mol x [tex] \frac{3}{2} [/tex]
                                                     = 6637.17 mol

Molar mass of Na₂CO₃ = 106 g mol⁻¹

Hence, mass of Na₂CO₃ = 6637.17 mol x 106 g mol⁻¹
                                        = 703540.02 g
                                        = 703.540 kg

Hence, the theoretical yield of Na₂CO₃ =  703.540 kg
Actual yield of Na₂CO₃ = 650 kg

Percentage yield = (650 kg / 703.540 kg) x 100%
                            = 92.34%