Verify that the divergence theorem is true for the vector field f on the region
e. give the flux. f(x, y, z) = 4xi + xyj + 4xzk, e is the cube bounded by the planes x = 0, x = 2, y = 0, y = 2, z = 0, and z = 2.

Respuesta :

By the divergence theorem,

[tex]\displaystyle\iint_{\partial\mathcal E}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\iiint_{\mathcal E}\nabla\cdot\mathbf f(x,y,z)\,\mathrm dx\,\mathrm dy\,\mathrm dz[/tex]

where [tex]\partial\mathcal E[/tex] is the boundary of [tex]\mathcal E[/tex]. We have

[tex]\nabla\cdot\mathbf f(x,y,z)=\dfrac{\partial(4x)}{\partial x}+\dfrac{\partial(xy)}{\partial y}+\dfrac{\partial(4xz)}{\partial z}=4+x+4x=5x+4[/tex]

so the flux is

[tex]\displaystyle\int_{z=0}^{z=2}\int_{y=0}^{y=2}\int_{x=0}^{x=2}(5x+4)\,\mathrm dx\,\mathrm dy\,\mathrm dz=72[/tex]