The graph of which function has a minimum located at (4, –3)?

f(x) = x2 + 4x – 11
f(x) = –2x2 + 16x – 35
f(x) = x2 – 4x + 5
f(x) = 2x2 – 16x + 35

Respuesta :

gmany
[tex]f(x)=ax^2+bx+c[/tex]

The graph of this function has minimum if a > 0.

Minimum is in point (h; k) where:

[tex]h=\dfrac{-b}{2a};\ k=f(h)[/tex]

[tex]minimum(4;-3)\to h=4;\ k=-3[/tex]

[tex]f(x)=x^2+4x-11;\ a=1 > 0;\ b = 4\\\\h=\dfrac{-4}{2\cdot1}=-2\neq4[/tex]

[tex]f(x)=-2x2+16x-35;\ a=-2 < 0[/tex]

[tex]f(x)=x^2-4x+5;\ a=1 > 0;\ b=-4\\\\h=\dfrac{-(-4)}{2\cdot1}=\dfrac{4}{2}=2\neq4[/tex]

[tex]f(x)=2x^2-16x+35;\ a=2 > 0;\ b=-16\\\\h=\dfrac{-(-16)}{2\cdot2}=\dfrac{16}{4}=4\\\\k=f(4)=2\cdot4^2-16\cdot4+35=2\cdot16-64+35=32-64+35=3\neq-3[/tex]

Answer: Any graph of this functions hasn't a minimum located at (4; -3).

If the coordinates of minimum are (4; 3),
then your answer is f(x) = 2x² - 16x + 35

Answer:

f(x) = 1/2x^2 – 4x + 5  (the third option)

Step-by-step explanation:

On ed :)