Write the inverse function for the function, ƒ(x) = x + 4. Then, find the value of ƒ -1(4). Type your answers in the box.

ƒ -1(x) = _________ x ___________ ______

ƒ -1(4) = _____________

Respuesta :

hope you'll understand the workings :)
Ver imagen kohguijenp8htec

Answer:  The required values are

[tex]f^{-1}(x)=x-4~~~~~~~~\textup{and}~~~~~~~~~f^{-1}(4)=0.[/tex]

Step-by-step explanation:  We are given the following function f(x) :

[tex]f(x)=x+4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(i)[/tex]

We are to find the values of [tex]f^{-1}(x)[/tex] and [tex]f^{-1}(4).[/tex]

Let us consider that

[tex]y=f(x)~~~~~~~~\Rightarrow x=f^{-1}(y).[/tex]

So, from equation (i), we get

[tex]f(x)=x+4\\\\\Rightarrow y=f^{-1}(y)+4\\\\\Rightarrow f^{-1}(y)=y-4\\\\\Rightarrow f^{-1}(x)=x-4.[/tex]

Substituting x = 4 in the above equation, we get

[tex]f^{-1}(4)=4-4=0\\\\\Rightarrow f^{-1}(4)=0.[/tex]

Thus, the required values are

[tex]f^{-1}(x)=x-4~~~~~~~~\textup{and}~~~~~~~~~f^{-1}(4)=0.[/tex]