Respuesta :

HP728
The coordinates are 8, -3.

Answer:

vertex (  [tex]\frac{1}{7}[/tex], [tex]\frac{131}{7}[/tex]).

Step-by-step explanation:

Given : The equation of a parabola is given.

       y=−14x²+4x−19

To find  : What are the coordinates of the vertex of the parabola.

Solution : We have given that

y = −14x²+4x−19

we will be "completing the square" .

Factor out -14 to make leading coefficient 1

y = -14 ([tex]x^{2} -\frac{2x}{7} +\frac{19}{14}[/tex])

Add and subtract [tex](\frac{-1}{7}) ^{2}[/tex]

y = -14 ([tex]x^{2} -\frac{2x}{7} +\frac{19}{14}+\frac{-1}{7}) ^{2} - (\frac{-1}{7})^{2})[/tex] .

Complete the square

y = -14 ( [tex](x -\frac{1}{7}) ^{2} +\frac{19}{14}- (\frac{-1}{7})^{2})[/tex].

y = -14 ( [tex](x-\frac{1}{7}) ^{2} -\frac{131}{7}[/tex]

Standard form of parabola vertex form y  = a(x - h)²+ k,

Where, ( h, k)  are vertex

On comparing a = -14 , h= [tex]\frac{1}{7}[/tex], k =  [tex]\frac{131}{7}[/tex]

Therefore, vertex (  [tex]\frac{1}{7}[/tex], [tex]\frac{131}{7}[/tex]).