Respuesta :

360-270=90
(270-90)/2
180/2=90°

Answer:

[tex]m\angle LMN=90^{O}[/tex]

Step-by-step explanation:

We know that the outside angle formed between two tangents of a circle can be found by taking half of difference of bigger arc angle and smaller arc angle.

We can express it as:

[tex]m\angle LMN=\frac{m\widehat{LN}_{Bigger}-m\widehat{LN}_{Smaller}}{2}[/tex]

From the given diagram, we get:

[tex]m\widehat{LN}_{Bigger}=270\\m\widehat{LN}_{Smaller}=360-270=90[/tex]

Upon substituting these values in the formula, we get:

[tex]m\angle LMN=\frac{270-90}{2}=\frac{180}{2}=90\\m\angle LMN=90^{0}[/tex]