Answer:
Option D is correct.
[tex](x, y) \rightarrow (x, y-6)[/tex] and reflected across x = -1
Step-by-step explanation:
From the given figure:
The coordinates of ABC are:
A(-7, 2), B(-3, 5) and C(-3, 1)
first apply the rule of translation on ABC i.e:
[tex](x, y) \rightarrow (x, y-6)[/tex]
Then;
[tex]A(-7, 2) \rightarrow (-7, 2-6)=(-7, -4)[/tex]
[tex]B(-3, 5) \rightarrow (-3, 5-6)=(-3, -1)[/tex]
[tex]B(-3, 1) \rightarrow (-3, 1-6)=(-3, -5)[/tex]
Next, reflect it across x = -1
The rule of reflection across x = -1 i.,e
[tex](x, y) \rightarrow (-(x+1)-1, y)[/tex]
or
[tex](x, y) \rightarrow (-x-2, y)[/tex]
then;
[tex](-7, -4) \rightarrow (7-2, -4)=(5, -4)=D[/tex]
[tex](-3, -1) \rightarrow (3-2, -1)=(1, -1)=E[/tex]
[tex](-3, -5) \rightarrow (3-2, -5)=(1, -5)=F[/tex]
Therefore, the glide reflection describes the mapping ABC to DEF is:
[tex](x, y) \rightarrow (x, y-6)[/tex] and reflected across x = -1