Respuesta :

Let

[tex]I(n,a)=\displaystyle\int\sin^nax\,\mathrm dx[/tex]
For demonstration on how to tackle this sort of problem, I'll only work through the case where [tex]n[/tex] is odd. We can write

[tex]\displaystyle\int\sin^nax\,\mathrm dx=\int\sin^{n-2}ax\sin^2ax\,\mathrm dx=\int\sin^{n-2}ax(1-\cos^2ax)\,\mathrm dx[/tex]
[tex]\implies I(n,a)=I(n-2,a)-\displaystyle\int\sin^{n-2}ax\cos^2ax\,\mathrm dx[/tex]

For the remaining integral, we can integrate by parts, taking

[tex]u=\sin^{n-3}ax\implies\mathrm du=a(n-3)\sin^{n-4}ax\cos ax\,\mathrm dx[/tex][tex]\mathrm dv=\sin ax\cos^2ax\,\mathrm dx\implies v=-\dfrac1{3a}\cos^3ax[/tex]

[tex]\implies\displaystyle\int\sin^{n-2}ax\cos^2ax\,\mathrm dx=-\dfrac1{3a}\sin^{n-3}ax\cos^3ax+\dfrac{a(n-3)}{3a}\int\sin^{n-4}ax\cos^4ax\,\mathrm dx[/tex]

For this next integral, we rewrite the integrand

[tex]\sin^{n-4}ax\cos^4ax=\sin^{n-4}ax(1-\sin^2ax)^2=\sin^{n-4}ax-2\sin^{n-2}ax+\sin^nax[/tex]
[tex]\implies\displaystyle\int\sin^{n-4}ax\cos^4ax\,\mathrm dx=I(n-4,a)-2I(n-2,a)+I(n,a)[/tex]

So putting everything together, we found

[tex]I(n,a)=I(n-2,a)-\displaystyle\int\sin^{n-2}ax\cos^2ax\,\mathrm dx[/tex]
[tex]I(n,a)=I(n-2,a)-\left(-\dfrac1{3a}\sin^{n-3}ax\cos^3ax+\dfrac{n-3}3\displaystyle\int\sin^{n-4}ax\cos^4ax\,\mathrm dx\right)[/tex]
[tex]I(n,a)=I(n-2,a)-\dfrac{n-3}3\bigg(I(n-4,a)-2I(n-2,a)+I(n,a)\bigg)+\dfrac1{3a}\sin^{n-3}ax\cos^3ax[/tex]
[tex]\dfrac n3I(n,a)=\dfrac{2n-3}3I(n-2,a)-\dfrac{n-3}3I(n-4,a)+\dfrac1{3a}\sin^{n-3}ax\cos^3ax[/tex]

[tex]\implies I(n,a)=\dfrac{2n-3}nI(n-2,a)-\dfrac{n-3}nI(n-4,a)+\dfrac1{na}\sin^{n-3}ax\cos^3ax[/tex]