Respuesta :

n = 121/4

(x - 11/2)^2
x^2 - 11x + 121/4

Answer:

[tex]n=\dfrac{121}{4}[/tex]

Step-by-step explanation:

Given: [tex]x^2-11x+n[/tex]

The given expression is perfect square trinomial.

The middle term is negative.

[tex]a^2-2ab+b^2=(a-b)^2[/tex]

[tex]\Rightarrow x^2-11x+n[/tex]

[tex]\Rightarrow x^2-11x+n=a^2-2ab+b^2[/tex]

Compare both sides

[tex]a=x[/tex]

[tex]2ab=11x[/tex]

[tex]b^2=n[/tex]

Using three equation to solve for n

[tex]2xb=11x[/tex]                   [tex]\because a=x[/tex]

[tex]b=\dfrac{11}{2}[/tex]

Now, we will put b

[tex]n=b^2[/tex]

[tex]n=(\frac{11}{2})^2[/tex]

[tex]n=\dfrac{121}{4}[/tex]

Hence, The value of n is 121/4 which makes perfect square trinomial.