Respuesta :
[tex]\bf \textit{recall that }i^2=-1\\\\
-------------------------------\\\\
(4+6i)^2\implies (4+6i)(4+6i)\implies 16+24i+24i+36i^2
\\\\\\
16+48i+36(-1)\implies 16+48i-36\implies -20+48i[/tex]
if you mean [tex](4+6i)^2[/tex] then
remember that [tex]i=\sqrt{-1}[/tex] and that [tex]i^2=-1[/tex]
just treat 'i' as a variable for the expansion part
[tex](4+6i)^2=[/tex][tex](4+6i)(4+6i)=[/tex][tex](4*4)+(6i*4)+(4*6i)+(6i*6i)=[/tex][tex]16+24i+24i+36i^2=[/tex][tex]16+48i+36(-1)=[/tex][tex]16+48i-36=[/tex][tex]-20+48i[/tex]
you didn't give us the expressions so you will have to see which one of them is equivilent ot -20+48i
remember that [tex]i=\sqrt{-1}[/tex] and that [tex]i^2=-1[/tex]
just treat 'i' as a variable for the expansion part
[tex](4+6i)^2=[/tex][tex](4+6i)(4+6i)=[/tex][tex](4*4)+(6i*4)+(4*6i)+(6i*6i)=[/tex][tex]16+24i+24i+36i^2=[/tex][tex]16+48i+36(-1)=[/tex][tex]16+48i-36=[/tex][tex]-20+48i[/tex]
you didn't give us the expressions so you will have to see which one of them is equivilent ot -20+48i