Respuesta :
if there is a triangle with Sid a and b then sina b/✓a2+b2and seven=✓a2+b2/a
Answer:
[tex]\sin A=\dfrac{2}{5\sqrt5}[/tex]
[tex]\sec B=\dfrac{5\sqrt5}{11}[/tex]
Step-by-step explanation:
Given: [tex]a=2,b=11[/tex]
Using pythagoreous theorem:
[tex]c^2=a^2+b^2[/tex]
[tex]c^2=11^2+2^2[/tex]
[tex]c=5\sqrt{5}[/tex]
Trigonometric Identities:
[tex]\sin \theta=\dfrac{\text{Opposite}}{\text{Hypotenuse}}[/tex]
[tex]\sin A=\dfrac{a}{c}[/tex]
[tex]\sin A=\dfrac{2}{5\sqrt5}[/tex]
[tex]\sec B=\dfrac{c}{b}[/tex]
[tex]\sec B=\dfrac{5\sqrt5}{11}[/tex]
Hence, The value of trigonometric identity
[tex]\sin A=\dfrac{2}{5\sqrt5}[/tex]
[tex]\sec B=\dfrac{5\sqrt5}{11}[/tex]