Respuesta :

if there is a triangle with Sid a and b then sina b/✓a2+b2and seven=✓a2+b2/a

Answer:

[tex]\sin A=\dfrac{2}{5\sqrt5}[/tex]

[tex]\sec B=\dfrac{5\sqrt5}{11}[/tex]

Step-by-step explanation:

Given: [tex]a=2,b=11[/tex]

Using pythagoreous theorem:

[tex]c^2=a^2+b^2[/tex]

[tex]c^2=11^2+2^2[/tex]

[tex]c=5\sqrt{5}[/tex]

Trigonometric Identities:

[tex]\sin \theta=\dfrac{\text{Opposite}}{\text{Hypotenuse}}[/tex]

[tex]\sin A=\dfrac{a}{c}[/tex]

[tex]\sin A=\dfrac{2}{5\sqrt5}[/tex]

[tex]\sec B=\dfrac{c}{b}[/tex]

[tex]\sec B=\dfrac{5\sqrt5}{11}[/tex]

Hence, The value of trigonometric identity

[tex]\sin A=\dfrac{2}{5\sqrt5}[/tex]

[tex]\sec B=\dfrac{5\sqrt5}{11}[/tex]