Respuesta :

the answer is x= -2 i hope this helps!!!!

In this question we need to find the value of [tex] x [/tex]. The expression given to us is:

[tex] x\div[(-6\tfrac{2}{3})\div(-2)]=-3.18\div 5.3 [/tex]

This can be rewritten as:

[tex] \frac{x}{\frac{(-6\tfrac{2}{3})}{-2}}=\frac{-3.18}{5.3} [/tex]

[tex] \frac{x}{\frac{\frac{20}{3}}{2}}=-0.6 [/tex]

[tex] \frac{x}{\frac{10}{3}} =-0.6 [/tex]

[tex] \frac{3x}{10} =-0.6 [/tex]

[tex] 3x=-6 [/tex]

[tex] x=-2 [/tex]

Thus the required value of [tex] x [/tex] is [tex] x=-2 [/tex] which is the answer.