Respuesta :
Let's convert all the quantities into S.I. units:
Mass of the ball: [tex]m=5.13 oz=0.15 kg[/tex]
Speed of the ball: [tex]v=95.0 mi/h=42.5 m/s[/tex]
The kinetic energy of the ball is given by
[tex]K= \frac{1}{2}mv^2 [/tex]
where m is the mass and v the speed. Substituting the data of the problem, we find
[tex]K= \frac{1}{2}(0.15 kg)(42.5 m/s)^2=135.5 J [/tex]
Mass of the ball: [tex]m=5.13 oz=0.15 kg[/tex]
Speed of the ball: [tex]v=95.0 mi/h=42.5 m/s[/tex]
The kinetic energy of the ball is given by
[tex]K= \frac{1}{2}mv^2 [/tex]
where m is the mass and v the speed. Substituting the data of the problem, we find
[tex]K= \frac{1}{2}(0.15 kg)(42.5 m/s)^2=135.5 J [/tex]
Answer:
409.4 joule
Explanation:
First convert oz into kg
1 oz = 0.0283495 kg
So, 5.13 oz = 0.1454 kg
Now convert mi/h into km/h.
1 mi/h = 0.447 m/s
So, 95 mi/h = 42.468 m/s
Now use the formula for kinetic energy
K.E = 0.5 x m v^2
= 0.5 x 0.454 x 42.468 x 42.468
= 409.4 Joule