Respuesta :

The sum is C. 40.

In most other cases you would do it with a formula, but because there are only 4 terms, we can do this by hand.

(-2)(-3)^1-1 = (-2)(1) = -2
(-2)(-3)^2-1 = (-2)(-3) = 6
(-2)(-3)^3-1 = (-2)(9) = -18
(-2)(-3)^4-1 = (-2)(-27) = 54

- 2 + 6 - 18 + 54 = 40.


Answer:

Option 3 rd is correct

sum of the given geometric series is, 40

Step-by-step explanation:

The sum of the finite geometric series is given by:

[tex]S_n=\frac{a_1(1-r^n)}{1-r}[/tex] [tex]r\neq 1[/tex]        ....[1]

Given that:

[tex]\sum_{n=1}^{4} (-2)(-3)^{n-1}[/tex]

We have to find the [tex]S_{4}[/tex] for the series:

[tex](-2)(-3)^0+(-2)(-3)^1+(-2)(-3)^2+(-2)(-3)^3[/tex]

[tex]-2+6-18+54[/tex]

here, [tex]a_1 = -2[/tex] and common ratio(r) = -3

Substitute these in [1] we have;

[tex]S_4=\frac{-2 \cdot (1-(-3)^{4})}{1-(-3)}[/tex]

⇒ [tex]S_4=\frac{-2 \cdot (1-(81))}{1+3}[/tex]

⇒ [tex]S_4=\frac{-2 \cdot -80}{4}[/tex]

Simplify:

[tex]S_4 =\frac{160}{4} = 40[/tex]

therefore, the sum of the given geometric series is, 40