Respuesta :
For this case we have the following function:
[tex]5x\sqrt[3]{x^2y} + 2 \sqrt[3]{x^5y} [/tex]
Rewriting we have:
[tex]5x\sqrt[3]{x^2y} + 2 \sqrt[3]{x^3x^2y} [/tex]
Then, by properties of exponents we have:
[tex]5x\sqrt[3]{x^2y} + 2x\sqrt[3]{x^2y} [/tex]
Then, adding both quantities we have:
[tex]7x\sqrt[3]{x^2y} [/tex]
Answer:
the following sum is:
d-7x(^3square root of x^2y)
[tex]5x\sqrt[3]{x^2y} + 2 \sqrt[3]{x^5y} [/tex]
Rewriting we have:
[tex]5x\sqrt[3]{x^2y} + 2 \sqrt[3]{x^3x^2y} [/tex]
Then, by properties of exponents we have:
[tex]5x\sqrt[3]{x^2y} + 2x\sqrt[3]{x^2y} [/tex]
Then, adding both quantities we have:
[tex]7x\sqrt[3]{x^2y} [/tex]
Answer:
the following sum is:
d-7x(^3square root of x^2y)
Answer:
d-7x(^3square root of x^2y)
Step-by-step explanation:
The given equation is:
[tex]5x\sqrt[3]{x^2y} +2\sqrt{3}{x^5y}[/tex]
Solving this equation step by step
[tex]5x\sqrt[3]{x^2y} +2\sqrt{3}{x^5y}[/tex]
∵ x⁵ = x³ × x²
[tex]5x\sqrt[3]{x^2y} +2\sqrt[3]{(x^3\times x^2)y}[/tex]
take the x³ outside the cube root in second term
[tex]5x\sqrt[3]{x^2y} +2x\sqrt[3]{(x^2)y}\\\sqrt[3]{x^2y} (5x+2x)\\7x\sqrt[3]{x^2y}[/tex]
Thus, last option is correct.